Exploring the Influence of Approximations for Simulating Valence Excited X‑ray Spectra

Exploring the Influence of Approximations for Simulating Valence Excited X‑ray Spectra

Abstract:

First-principles simulations of excited-state X-ray spectra are becoming increasingly important to interpret the wealth of electronic and geometric information contained within femtosecond X-ray absorption spectra recorded at X-ray Free Electron Lasers (X-FELs). However, because the transition dipole matrix elements must be calculated between two excited states (i.e., the valence excited state and the final core excited state arising from the initial valence excited state) of very different energies, this can be challenging and time-consuming to compute. Herein using two molecules, protonated formaldimine and cyclobutanone, we assess the ability of n-electron valence-state perturbation theory (NEVPT2), equation-of-motion coupled-cluster theory (EOM- CCSD), linear-response time-dependent density functional theory (LR-TDDFT) and the maximum overlap method (MOM) to describe excited state X-ray spectra. Our study focuses in particular on the behavior of these methods away from the Franck−Condon geometry and in the vicinity of important topological features of excited-state potential energy surfaces, namely, conical intersections. We demonstrate that the primary feature of excited-state X-ray spectra is associated with the core electron filling the hole created by the initial valence excitation, a process that all of the methods can capture. Higher energy states are generally weaker, but importantly much more sensitive to the nature of the reference electronic wave function. As molecular structures evolve away from the Franck−Condon geometry, changes in the spectral shape closely follow the underlying valence excitation, highlighting the importance of accurately describing the initial valence excitation to simulate the excited-state X-ray absorption spectra.

Additional Resources

DOI: 10.1021/acs.jpca.4c06150
Bibtex:

Related Posts

Synthesis, Photophysical and Electronic Properties of a D-π-A Julolidine-Like Pyrenyl-o-Carborane

Synthesis, Photophysical and Electronic Properties of a D-π-A Julolidine-Like Pyrenyl-o-Carborane

  • Johannes Krebs, Lisa Brändler, Ivo Krummenacher, Alexandra Friedrich, Holger Braunschweig, Maik Finze, Basile F. E. Curchod and Todd B. Marder
  • Publication

We synthesized 2-(1-1,2-dicarbadodecaboranyl(12))-6,6,12,12-tetramethyl-7,8,11,12-tetrahydro-6H,10H-phenaleno[1,9-fg]pyrido[3,2,1-ij]quinoline (4), a julolidine-like pyrenyl-o-carborane, with pyrene substituted at the 2,7-positions on the HOMO/LUMO nodal plane. Using solid state molecular structures, photophysical data, cyclic voltammetry, DFT and LR-TDDFT calculations, we compare o-carborane and B(Mes)2 (Mes=2,4,6-Me3C6H2) as acceptor groups…

Read More
On the Topological Phase around Conical Intersections with Tamm–Dancoff Linear-Response Time-Dependent Density Functional Theory

On the Topological Phase around Conical Intersections with Tamm–Dancoff Linear-Response Time-Dependent Density Functional Theory

  • Jack T. Taylor, David J. Tozer and Basile F. E. Curchod
  • Publication

Regions of nuclear-configuration space away from the Franck–Condon geometry can prove problematic for some electronic structure methods, given the propensity of such regions to possess conical intersections, i.e., (highly connected) points of degeneracy between potential energy surfaces. With the likelihood (perhaps even inevitability) for nonadiabatic dynamics simulations to explore molecular geometries in close proximity to conical intersections, it is vital that the performance of electronic structure methods is routinely examined in this context…

Read More
Ultrafast electron diffraction of photoexcited gas-phase cyclobutanone predicted by ab initio multiple cloning simulations

Ultrafast electron diffraction of photoexcited gas-phase cyclobutanone predicted by ab initio multiple cloning simulations

We present the result of our calculations of ultrafast electron diffraction (UED) for cyclobutanone excited into the S2 electronic state, which is based on the non-adiabatic dynamics simulations with the Ab Initio Multiple Cloning (AIMC) method with the electronic structure calculated at the SA(3)-CASSCF(12,12)/aug-cc-pVDZ level of theory…

Read More